ACF, an ISWI-Containing and ATP-Utilizing Chromatin Assembly and Remodeling Factor

نویسندگان

  • Takashi Ito
  • Michael Bulger
  • Michael J Pazin
  • Ryuji Kobayashi
  • James T Kadonaga
چکیده

We describe the purification and characterization of ACF, an ATP-utilizing chromatin assembly and remodeling factor. ACF is a multisubunit factor that contains ISWI protein and is distinct from NURF, another ISWI-containing factor. In chromatin assembly, purified ACF and a core histone chaperone (such as NAP-1 or CAF-1) are sufficient for the ATP-dependent formation of periodic nucleosome arrays. In chromatin remodeling, ACF is able to modulate the internucleosomal spacing of chromatin by an ATP-dependent mechanism. Moreover, ACF can mediate promoter-specific nucleosome reconfiguration by Gal4-VP16 in an ATP-dependent manner. These results suggest that ACF acts catalytically both in chromatin assembly and in the remodeling of nucleosomes that occurs during transcriptional activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly.

The assembly of core histones and DNA into periodic nucleosome arrays is mediated by ACF, an ISWI-containing factor, and NAP-1, a core histone chaperone, in an ATP-dependent process. We describe the isolation of Drosophila acf1 cDNA, which encodes the p170 and p185 forms of the Acf1 protein in ACF. Acf1 is a novel protein that contains two PHD fingers, one bromodomain, and two new conserved reg...

متن کامل

Binding of Acf1 to DNA involves a WAC motif and is important for ACF-mediated chromatin assembly.

ACF is a chromatin-remodeling complex that catalyzes the ATP-dependent assembly of periodic nucleosome arrays. This reaction utilizes the energy of ATP hydrolysis by ISWI, the smaller of the two subunits of ACF. Acf1, the large subunit of ACF, is essential for the full activity of the complex. We performed a systematic mutational analysis of Acf1 to elucidate the functions of specific subregion...

متن کامل

MacroH2A allows ATP-dependent chromatin remodeling by SWI/SNF and ACF complexes but specifically reduces recruitment of SWI/SNF.

The variant histone macroH2A helps maintain X inactivation and gene silencing. Previous work implied that nucleosomes containing macroH2A cannot be remodeled by ISWI and SWI/SNF chromatin remodeling enzymes. Using approaches that prevent misassembly of macroH2A nucleosomes, we find that macroH2A nucleosomes are excellent substrates for both enzyme families. Interestingly, SWI/SNF, which is invo...

متن کامل

Insights into how chromatin remodeling factors find their target in the nucleus.

E nzymes that use energy gained by ATP-hydrolysis to alter nucleosomes, the building blocks of chromatin, are involved in all processes occurring on DNA (1, 2). These ATP-dependent chromatin remodeling factors regulate access to DNA either by moving nucleosomes away from a transcription factor binding site or into such a site, occluding further access (1, 2). All known ATP-dependent nucleosome ...

متن کامل

Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors.

ATP-dependent chromatin-remodeling machines of the SWI/SNF family are involved in many cellular processes in eukaryotic nuclei, such as transcription, replication, repair and recombination. Remodeling factors driven by the ATPase ISWI make up a subgroup of this family that exhibits defined mechanistic and functional characteristics. ISWI-induced nucleosome mobility endows nucleosomal arrays wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 90  شماره 

صفحات  -

تاریخ انتشار 1997